

 This document explains how to implement DIOC devices into a TwinCAT 3 project.

Manual TP10/DIOC

 Page 2 of 28

1. Contents

1. Contents __ 2

2. Introduction ___ 3

3. Short guide to implementing DIOC into TwinCAT 3 _______________ 3

4. Detailed manual to implementing DIOC into TwinCAT 3 ___________ 4

Step 1: Use E-bus digital input and output terminals ____________________________________ 4

Step 2: Download the DIOC library ‘DIOC_Library’ and install it____________________________ 4

Step 3: Implement the library into a TwinCAT PLC project ________________________________ 8

Step 4: Set the cycle time ___ 9

Method 1: Change the standard cycle time ___ 9

Method 2: create a new task with a 12ms cycle time ________________________________ 11

Step 5: Implementation of the visualisation __ 14

TP10 visualisation __ 16

Step 6: the program is to be executed after an output update ___________________________ 19

I/O at task begin ___ 19

Calling I/O in the correct task ___ 20

Sync unit assignment __ 20

5. Inputs and outputs of the TP10 block_________________________ 21

Description usage of the inputs and outputs of the TP10 _______________________________ 21

Inputs __ 22

Outputs __ 25

Systeminfo __ 26

Sample program listing TP10 __ 27

 Page 3 of 28

2. Introduction
This manual is provided to help people implement the TP10 into their own TwinCAT 3

projects. If required, you can visit our site, www.fixsus.be, or our forum,

https://forum.fixsus.be, for additional info.

3. Short guide to implementing DIOC into

TwinCAT 3
• Step 1: Use E-bus digital input and output terminals

• Step 2: Download the DIOC library ‘DIOC_Library’ and install it

The latest version of the library can be found on the Fixsus forum,

https://forum.fixsus.be

• Step 3: Implement the library into a TwinCAT PLC project

• Step 4: Change the cycle time to 12 ms

o Method 1: change the standard cycle time to 12 ms and call the instances

in MAIN

o Method 2: make a new task with a cycle time of 12 ms and call the

instances in the new task

• Step 5: Implement the new visualizations, if required

o Implement the ‘TP10’ or ‘TP10 mini’ visualization for each TP10.

• Step 6: Change the system manager settings

o Check if the in- and outputs of the DIOC devices are being called in the

correct task

o Enable the ‘I/O at task begin for the linked PLC program

http://www.fixsus.be/
https://forum.fixsus.be/
https://forum.fixsus.be/

 Page 4 of 28

4. Detailed manual to implementing DIOC

into TwinCAT 3
Step 1: Use E-bus digital input and output terminals

To implement the DIOC protocol, the E-bus must be used. To do this, E-bus digital input

and output terminals must be used (e.g. EL1809, EL2809 or EL1859).

The DIOC protocol cannot be used on the K-bus. If the amount of inputs/outputs of the

K-bus is too large, the I/O cycle time will get an offset causing the DIOC protocol to not

function properly. Therefore, the K-bus is not officially supported.

Step 2: Download the DIOC library ‘DIOC_Library’ and install it

The first step of the implementation is to install the necessary libraries.

If the library is already installed continue to step 2.

Start by creating a new TwinCAT (not PLC) project.

Add a TwinCAT PLC project by right clicking in the solution tree on item PLC

 Page 5 of 28

Download the latest TC3 library from our forum. (see https://forum.fixsus.be/topics/8-

TP10---RA---Technician--Programming)

https://forum.fixsus.be/topics/8-TP10---RA---Technician--Programming
https://forum.fixsus.be/topics/8-TP10---RA---Technician--Programming

 Page 6 of 28

The library file ‘TC3_fixsus_dioc_library.library’ must be added to the TwinCAT library

repository. This must only be done once, or every time there is a new library version.

Do this by right clicking on ‘references’ in the plc, selecting library repository

Press install

 Page 7 of 28

And install the downloaded library by double clicking it

You should now find the (new) DIOC library under “Miscellaneous”

 Page 8 of 28

Step 3: Implement the library into a TwinCAT PLC project

If the ‘DIOC_library’ was installed, it needs to be implemented in every project using

DIOC.

Do this by right clicking on ‘references’ in the plc and selecting ‘add library’

Search for Dioc or select the library under “Miscellaneous” and press ok

The library will now be imported into the PLC project

 Page 9 of 28

Step 4: Set the cycle time

To ensure a good communication with the TP10 and other DIOC devices, instances of the

TP10 and other DIOC function blocks must be called with a fixed cycle time. This cycle

time is currently 12ms.

There are two methods to do this:

1. The standard cycle time can be set to 12ms, the DIOC instances should then be

called in the standard program (the MAIN program)

2. A new task can be made with a cycle time of 12ms in which the DIOC instances

can be called

Method 1: Change the standard cycle time

This is the least complicated method. However, when other components of the program

need to run on a different cycle time or when the whole program is too large to run on a

cycle time of 12ms, the second method should be used.

The cycle time can be changed under System/Tasks

Select the PLC task and change the default cycle time to 12ms by increasing the cycle

ticks to 12.

 Page 10 of 28

Now the DIOC instances must be called in the programs called by the PlcTask running at

12ms. For instance MAIN (PRG)

Make sure the instance is called every cycle to ensure a good communication.

 Page 11 of 28

Method 2: create a new task with a 12ms cycle time

The first step is to make a new program that will be executed in the new task. Making a

new program can be done by right-clicking under POU and adding a new object. The new

program is named MAIN_12ms in the example.

In this new program DIOC instances must be called, this means they will be executed.

 Page 12 of 28

After the block is created we must create a referenced task in the plc.

Give the name for the new task, press create new task and press open

Once the task has been created drag and drop the program created before to the task

After linking set the cycle time of the new task to 12ms

 Page 13 of 28

The priorities of the tasks should also be set in order. The task with the lowest cycle time

should always get the lowest priority number (lowest priority number means highest

priority).

 Page 14 of 28

Step 5: Implementation of the visualisation

The DIOC_Library does NOT contain visualizations.

An example of visualization elements can be found in the sample that can be downloaded

on the Fixsus forum. (see https://forum.fixsus.be/topics/8-TP10---RA---Technician--

Programming).

Open a new instance of visual studio and choose ‘open project’.

Select the archive and extract in the folder of your choice.

In the extracted project one can find 2 visualizations for each component:

• TP10 and TP10_MINI

• RC and RC_MINI

These can be used in the user program, by simple export/import or even copy/paste

from the sample project to the new project.

The project also contains a sample implementation of a visualization with 1 TP10 and 1

RC called TC_VISU.

https://forum.fixsus.be/topics/8-TP10---RA---Technician--Programming
https://forum.fixsus.be/topics/8-TP10---RA---Technician--Programming

 Page 15 of 28

 Page 16 of 28

TP10 visualisation
Every TP10 can get its own visualisation where the status of the buttons and the

measurements can be read. For a complete explanation of the possibilities, see chapter

‘Variables of the TP10’.

In the sample project, select all components under folder TP10 and copy them

Now paste them anywhere you want in your own program

There are two possible visualisations that can be used. The ‘TP10’ visualisation shows the

whole TP10, while the ‘TP10_MINI’ is a small button with which the full visualisation can

be opened.

 Page 17 of 28

Both visualisations can be added in the same way. As an example, a ‘TP10’ visualisation

is added.

 Page 18 of 28

Open the visualisation screen in which the TP10 visualisation will be used.

• Add a frame

• Select TP10 or TP10_MINI and add it to the frame

• Press ok

To make sure the TP10 visualisation works as expected, the correct links must be set.

This can be done in the menu of the visualisation. Select ‘References’ in the properties of

the frame. In this menu the next configurations can be done:

• m_Input_FB_TP10 : a reference to the instance of the TP10 in the program

• m_Input_X_OFFSET and m_Input_Y_OFFSET: only used in the TP10_MINI.

With these placeholders the TP10 can be moved relative to the button to open

the TP10 visualisation.

 Page 19 of 28

Step 6: the program is to be executed after an output update

There are two VERY IMPORTANT things that have to be set to implement the TP10 and

other DIOC devices

I/O at task begin
By means of a pragma we define whether a program is to be executed after an output

update. This attribute replaces the TwinCAT 2 functionality of the option IO at Task

begin.

The pragma must be placed in front of the PROGRAM calling the dioc blocks. In our

example MAIN_12ms.

{attribute 'TcCallAfterOutputUpdate'}

PROGRAM MAIN_12ms

VAR

END_VAR

Once compiled this can be easily checked by looking at the two arrows on the task in the

solution tree.

Before:

After:

Depending on the TwinCAT 3 version, it might be possible to disconnect and reconnect

the program from the referenced task for the arrows to change.

 Page 20 of 28

Calling I/O in the correct task
Depending on the size of the program and the situation, it can happen that the IO of the

DIOC devices are not in the correct task IO. Like below, the IO is called in the task IO of

MAIN and not MAIN_12ms as it should.

For this purpose as the pragma 'TcContextName' above the program where the

instantiation of the dioc devices is done.

After compilation it should look like

Sync unit assignment
For bigger projects, it might be a good idea to assign sync units to your I/Os. Without

sync units the TP10’s might not work if another I/O is missing or malfunctioning.

Typically, a different sync unit should be assigned to every EtherCAT Coupler in your

project. For more information on the sync units visit the Beckhoff information site.

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_io_intro/1468206

859.html&id=6053821954081018594

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_io_intro/1468206859.html&id=6053821954081018594
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_io_intro/1468206859.html&id=6053821954081018594

 Page 21 of 28

5. Inputs and outputs of the TP10 block

Description usage of the inputs and outputs of the TP10

The TP10 block has a lot of inputs that can change the behaviour of the TP10.

As an example below the RGB leds of the TP10 are set to red. To do this, predefined

colors can be used.

Other colour constants available in the DIOC library are listed below in the description of

the input.

The other variables of the TP10 can also be addressed this way. The table below shows a

list of all the inputs, outputs and configuration variables the TP10 has.

The inputs and outputs of the TP10 are pretty straight forward. But for an even better

understanding of a full implementation of a TP10, a very simple example is implemented

in the sample project.

The code of the sample project is listed at the end of the document. The code is well

documented so it should be comprehensible.

If you experience troubles while implementing, please post a note or a question in the

forum.

 Page 22 of 28

Inputs

Name Type Description

bRoomAnalyser BOOL This boolean must be true of the connected

device is a Room Analyser. If this boolean is

true, all buttons are disabled, except button

10. Button 10 still be used to make the

Room Analyser flash green. This can be

used to test the DIOC communication with

the PLC.

arr_bLeds ARRAY

[0..10] OF

BOOL

Every button of the TP10 has it’s own led.

These can be controlled by changing the

values in this array. True will make the led

go on, false will make the led go off.

arr_bLeds [1] = led 1, arr_bLeds [10] = led

10

iIntensityLeds INT Value between 0 and 100 that changes the

intensity of the buttonleds.

arr_bMasks ARRAY

[0..10] OF

BOOL

Every button of the TP10 can be turned off,

this can be done by changing the values in

this array. False means the button is

enabled, true means the button is disabled.

arr_bMasks [1] = button 1, arr_bMasks [10]

= button 10, bRoomAnalyser overrules

these.

arr_sButtonComments ARRAY

[0..10] OF

STRING(8)

Every button of the TP10 has a short

description (maximum 8 characters) that

will be displayed on the visualisation.

arr_sButtonComments [1] = comment

button 1, arr_sButtonComments [10] =

comment button 10

bReset BOOL When the TP10 has to be reset, this boolean

should be set to true briefly. Once bReset is

false again, the reset time will count to

restart the TP10.

 Page 23 of 28

iIntervalCO INT Interval for the CO measurement in

seconds. This determines how fast the

measurements of the CO sensor must be

checked. This is standard 7 (seconds).

This variable must be changed before the

start of the program. This value will not be

sent to the TP10 once the TP10 program is

running. After a restart or reset, this value

will be sent again.

iIntervalCO2 INT Interval for the CO2 measurements in

seconds. This determines how fast the

measurement of the CO2 sensor must be

checked. This is standard 8 (seconds).

The same conditions apply as iIntervalCO.

iIntervalIllumination INT Interval for the illumination measurement in

seconds. This determines how fast the

measurement of the illumination sensor

must be checked. This is standard 13

(seconds).

The same conditions apply as iIntervalCO.

iIntervalRoomHumidity INT Interval for the humidity measurement in

seconds. This determines how fast the

measurement of the humidity sensor must

be checked. This is standard 11 (seconds).

The same conditions apply as iIntervalCO.

iIntervalRoomtemp INT Interval for the roomtemperature

measurement in seconds. This determines

how fast the measurement of the

roomtemperature sensor must be checked.

This is standard 3 (seconds).

The same conditions apply as iIntervalCO.

iIntervalVOC INT Interval for the VOC measurement in

seconds. This determines how fast the

measurement of the VOC sensor must be

checked. This is standard 5 (seconds)

The same conditions apply as iIntervalCO.

dwRgb DWORD The TP10 has a few RGB leds that can be

used to light up the TP10. This value

 Page 24 of 28

determines the intensity of each led.

Predefined colors can be used for this input:

RGB_BLACK , RGB_NAVY , RGB BLUE ,

RGB_GREEN , RGB_TEAL , RGB_LIME ,

RGB_AQUA , RGB_MAROON , RGB_PURPLE ,

RGB_OLIVE , RGB_GREY , RGB_ORANGE ,

RGB_FUCHSIA , RGB_YELLOW ,

RGB_WHITE

You may also create your own color. To do

this a DWORD has to be made. (eg.

16#1E8FE03F) In the example 1E is a

hexadecimal value for the intensity, 8F is

the red value, E0 is the green value and 3F

is the blue value.

bEn BOOL Enable bit.

bLocate BOOL IF TRUE: makes the TP10 flash green 3

times to know which one you are currently

using.

bWallSurface BOOL Boolean that lowers the sensitivity of the

buttons. Enable this boolean for a surface

mount TP10.

 Page 25 of 28

Outputs

Name Type Description

qarr_bButtons ARRAY

[0..12] OF

BOOL

Every button of the TP10 can be read. This can

be done by reading the values from this array.

False means the button is operated, true

means the button is unoperated.

qarr_bButtons [1] = button 1, qarr_bButtons

[10] = button 10.

qfCO2 REAL Value of the CO2 sensor in PPM (parts per

million).

qfHumidity REAL Value of the humidity in percent.

qfLux REAL Value of the illumination sensor in lux.

qfRoomTemperature REAL Value of the temperature measurement in °C.

qfVOC REAL Value of the VOC sensor in PPB (parts per

billion)

 Page 26 of 28

Systeminfo

Name Type Description

qbDeviceActive BOOL Boolean that indicates if the TP10 is active.

True = TP10 active

False = TP10 not active

qdtVersionHw DATE Date of the hardware version of the TP10.

qdtVersionSw DATE Date of the software version of the TP10.

qdtVersionReg DATE Date of the register version of the TP10.

qrVoltageLevelA REAL Voltage level of the A line in Volt.

qrVoltageLevelB REAL Voltage level of the B line in Volt.

qsUniqueId STRING Unique ID of the TP10

 Page 27 of 28

Sample program listing TP10

PROGRAM P_Samples_TP10

VAR

 (* TP10 Parameters *)

 bEn : BOOL := TRUE;

 bReset : BOOL;

 iIntensityLeds : INT := 50; (* Change the led intensity *)

 (* Internal vars *)

 PFButton1 : R_TRIG; (* a rising edge trigger *)

END_VAR

(* ------- CONTROL SAMPLES *)

(* Activate the device *)

fb_TestTP10_1.bEn := bEn; (* OPTIONAL Device is standard enabled

internally *)

(* Reset the device *)

fb_TestTP10_1.bReset := bReset;

(* Toggle led when button 1 is pressed*)

PFButton1(CLK:= fb_TestTP10_1.qarr_bButtons[1]);

IF PFButton1.q THEN

 fb_TestTP10_1.arr_bLeds[1]:= NOT fb_TestTP10_1.arr_bLeds[1];

END_IF

(* No color when button 2 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[2] THEN

 fb_TestTP10_1.dwRgb := RGB_BLACK;

END_IF

(* Disable button 3,4 and 5

 IF arr_bMasks[1] .. arr_bMasks[10] == TRUE then these buttons are disabled *)

fb_TestTP10_1.arr_bMasks[3] := TRUE;

fb_TestTP10_1.arr_bMasks[4] := TRUE;

fb_TestTP10_1.arr_bMasks[5] := TRUE;

(* Red color when button 6 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[6] THEN

 fb_TestTP10_1.dwRgb := RGB_RED;

END_IF

(* (light) Red color when button 7 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[7] THEN

 (* Non default colour with max (100%) intensity *)

 fb_TestTP10_1.dwRgb := 16#64_64_0A_0A;

END_IF

(* (light) Red color when button 8 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[8] THEN

 (* Non default colour with standard (30%) intensity *)

 fb_TestTP10_1.dwRgb := 16#1E_64_19_19;

END_IF

 Page 28 of 28

(* (light) Blue color when button 9 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[9] THEN

 (* Non default colour with medium (65%) intensity *)

 fb_TestTP10_1.dwRgb := 16#41_19_19_64;

END_IF

(* Blue color when button 10 is pressed*)

IF fb_TestTP10_1.qarr_bButtons[10] THEN

 fb_TestTP10_1.dwRgb := RGB_BLUE;

END_IF

(* Change the led intensity *)

fb_TestTP10_1.iIntensityLeds := iIntensityLeds;

(* Interval update times for the sensors *)

fb_TestTP10_1.iIntervalRoomtemp; (* Default := 3 *)

fb_TestTP10_1.iIntervalRoomHumidity; (* Default := 11 *)

fb_TestTP10_1.iIntervalCO2; (* Default := 8 *)

fb_TestTP10_1.iIntervalCO; (* Default := 7 *)

fb_TestTP10_1.iIntervalVOC; (* Default := 5 *)

fb_TestTP10_1.iIntervalIllumination; (* Default := 13 *)

fb_TestTP10_1.iIntervalIR; (* Default := 17 *)

(* ------- FEEDBACK SAMPLES,

 * these are the measured values a TP10 can return

 * be aware that it might take along time before the data is available after starting

 *)

fb_TestTP10_1.qfRoomTemperature;

fb_TestTP10_1.qfVOC;

fb_TestTP10_1.qfCO2;

fb_TestTP10_1.qfHumidity;

fb_TestTP10_1.qfLux;

fb_TestTP10_1.qfInfrared;

(*Analyse data*)

fb_TestTP10_1.qdtVersionHw;

fb_TestTP10_1.qdtVersionSw;

fb_TestTP10_1.qdtVersionReg;

fb_TestTP10_1.qsUniqueId;

fb_TestTP10_1.qrVoltageLevelA;

fb_TestTP10_1.qrVoltageLevelB;

fb_TestTP10_1.qbDeviceActive;

